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We analyze the image effects of a cylindrical pipe on continuous beams with elliptical symmetry. Differ-
ential equations involving the second-order spatial moments of a particle distribution are given. From the
moment equations, a set of Kapchinskij-Vladimirskij-type equations is developed, which include the image
effects of a cylindrical beam pipe. These equations are used to analyze the image effects for focusing, drift,
defocusing, drift channels, sheet beams, and a magnetic quadrupole matching section.
@S1063-651X~96!08209-8#

PACS number~s!: 41.85.2p

I. INTRODUCTION

In most accelerator applications a particle beam must
propagate through a conducting beam pipe. If the beam di-
mensions are comparable to the pipe dimensions then the
image forces from the pipe will affect the beam dynamics.
Usually these are unwanted effects, so by studying such phe-
nomena we hope to develop techniques to reduce their influ-
ence. In previous works we have analyzed image effects for
axisymmetric bunched beams in cylindrical pipes@1,2#. In
this paper we continue the analysis for continuous beams
having elliptical symmetry. The primary application of these
results would be the analysis of magnetic quadrupole trans-
port systems.

Here we consider continuous beams centered on thez
axis, the axis of propagation, having elliptical symmetry. By
elliptical symmetry, we mean that the beam is symmetric
across the planesx50 andy50. Elliptical symmetry also
implies that the~transverse! charge density of the beam must
be constant along concentric ellipses. We assume the beam
pipe to be cylindrical with radiusb. We also assume the pipe
to be perfectly conducting and, for necessity in constructing
the Green’s function, we hold it at ground potential~this
does not affect the analysis!. Figure 1 depicts the example
situation of a uniform elliptical distribution in a cylindrical
pipe. A transverse cross section of the beam and beam pipe is
shown lying in thexy plane. The beam is centered on thez

axis ~not shown! corresponding to the point (x,y)5(0,0).
The beam hasx envelopeax , andy envelopeay . Of course,
for more general distributionsax anday will no longer be the
x and y envelopes of the beam, but will be the major and
minor semiaxes of ellipses along which the charge density is
constant.

A. The equivalent beam concept

Our work is essentially an extension to the results of Sa-
cherer@3#. He derived a set of coupled, ordinary differential
equations that describe the evolution of the rms beam enve-
lope for all continuous beams having elliptical symmetry.
These equations have the same functional form as the
Kapchinskij-Vladimirskij @4# coupled-envelope equations
~KV equations!. Indeed, for the uniform distribution these
equations are the KV equations exactly. Sacherer’s result led
to the idea of the equivalent KV beam.

Sacherer’s formalism allows us to model any continuous
beam having elliptical symmetry with an equivalent KV
beam. This equivalent beam is a uniform-density, continuous
beam having elliptical cross section and having the same
second moments as the actual beam under study. The second
spatial moments are called the rms envelopes of the beam.
The KV equivalent beam has beam envelopes twice that of
the actual beam’s rms beam envelopes. Also, the emittances
of the equivalent beam, called the effective emittances, are
four times the rms emittances of the actual beam. Thus, the
KV coupled-envelope equations may be used to model any
continuous beam with elliptical symmetry if the rms beam
envelopes and effective emittance values are used in the
equation.

The main achievement of our work is the addition of
terms to the KV equations that describe the dominant effects
of a cylindrical beam pipe. More specifically, we extend Sa-
cherer’s equations to include the first-order image effects due
to the beam pipe. We then translate these equations to that of
the equivalent KV beam. The result is the original KV equa-
tions with a term added~to each equation!, which accounts
for images.

B. Limitations and assumptions

The major shortcoming of this work is the assumption
that the rms emittances are constant or knowna priori. The

FIG. 1. Example geometry of ellipsoidally symmetric uniform
beam in a cylindrical pipe.
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forehand knowledge of the rms emittances through the beam
channel is usually an unrealistic expectation. Since rms emit-
tance growth may occur with nonlinear forces~and the image
forces are typically nonlinear!, the assumption of constant
emittances leaves us with a potentially inconsistent analysis.
Thus, it would seem that the best utilization of our work
would be to determine under what conditions image forces
play a significant role in the beam dynamics, rather than the
precise prediction of beam behavior under the influence of
image forces.

In this paper we neglect longitudinal effects. That is we
assume that the continuous beam expands and contracts
gradually enough to ignore the longitudinal self-fields. Also,
this implies that the focusing system is ideal in that no axial
forces are produced. With these assumptions we may treat
each cross section of the beam independently. The transverse
motion is decoupled from the longitudinal motion and only
the transverse self-forces and focusing forces affect the beam
at each cross section. Thus, for each axial locationz we may
describe the beam by a distribution function of the transverse
phase-space variablesx, x8, y, andy8.

II. THE ENVELOPE EQUATIONS WITH IMAGES

Let ^ & denote the moment operator with respect to the
particle beam distribution. It is possible to derive a set of
coupled differential equations for the second spatial mo-
ments^x2& and ^y2& of the particle beam distribution@3#,
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where the prime indicates differentiation with respect toz, q
is the particle charge,m is the particle mass,n is the beam’s
axial velocity,2kx(z)x is the focusing force in thex direc-
tion, andEx is the beam’s self-field in thex direction. We
have similar definitions for2ky(z)y andEy in the y direc-
tion. The symbolsẽx and ẽy represent the rms emittances in
thex andy planes, respectively. For systems where all forces
are linear, it is known that the rms emittances are invariant
@5#. If there exist nonlinear forces~say in Ex! we simply
assume that eitherẽx is constant or its variation is knowna
priori .

The only unknowns in Eqs.~1! are ^xEx& and ^yEy&.
Sacherer computed these quantities for the free-space situa-
tion. He found the surprisingly simple result
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with an analogous result for̂yEy&. Note that the above ex-
pression is independent of the distribution; this condition
leads to the notion of KV equivalent beams. Also, the above
expression provides coupling between the two equations in
~1!. Substituting this expression for^xEx& in Eqs.~1! leads to
Sacherer’s equations for the rms beam envelopes^x2&1/2 and
^y2&1/2. However, we wish to include the effects of images in
this model. We compute the fields including images using

Green’s function in polar coordinates. By expanding Green’s
function in a trigonometric series, we can identify the terms
corresponding to the induced~image! charges on the beam
pipe. Taking the moments of these fields we get@6#
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whereO( ) indicates the standard order notation. The first
term in the above equation represents the free-space contri-
bution to^xEx&, while the second term represents the contri-
bution due to the induced charges from the distribution’s
quadrupole moment. The last term is intended to indicate
that the image forces due to the higher-order moments of the
charge distribution~octupole moments and up! scale as
^x4&2/b8, etc.

By substituting Eq.~3! into Eqs. ~1! we have moment
equations that include the first-order image effects. However,
it is the KV equivalent beam that is of interest. Defining the
envelopes of the KV equivalent beam in thex andy planes
by X(z) andY(z), respectively, we know that

X52^x2&1/2, Y52^y2&1/2 ~4!

for this beam. Collecting these results and substituting them
into Eqs. ~1! yields the following set of equations for the
equivalent KV beam:
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whereK5qI/(2pe0gmn3) is the generalized beam perver-
ance @7# ~I being the beam current!, and
kx(z)5kx(z)/(gmn2) andky(z)5ky(z)/(gmn2) are the fo-
cusing functions in thex and y planes, respectively. The
quantitiesex andey are the effective emittances of the beam
given by 4ẽx and 4ẽy , respectively. These equations are rec-
ognized as the standard KV coupled-envelope equations with
the addition of a term~for each equation! accounting for the
dominant image effects. Since the beam is centered and has
elliptical symmetry,^x3& is zero and the next image term
will be an octupole term.

III. EXAMPLES AND ANALYSIS

We may use Eqs.~5! to explore the effects of the beam
pipe on the beam dynamics. In this section we present three
example situations to determine the significance of image
effects in typical applications. The first example is a periodic
transport channel made of~magnetic! quadrupole lenses. We
treat this example completely analytically by comparing the
relative strengths of the competing terms in Eqs.~5!. The
second example is the approximate analysis of a sheet beam
in a cylindrical pipe. The third example is a matching section
for a quadrupole transport channel used in the University of
Maryland’s Electron Ring Experiment@8,9#. In this example
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we numerically integrate Eqs.~5! to analyze the effects of
images.

A. Periodic transport channel

Consider a periodic transport channel made up of mag-
netic quadrupoles in a FODO arrangement~focusing, drift,
defocusing, drift!. Assume that we have a matched beam
with equalx and y emittances. In addition assume that the
FODO channel is symmetric, that is, it has equal focusing
and defocusing strengths in each plane. In such a periodic
channel, the beam envelopesX andY will oscillate 180° out
of phase with each other. We denote the minimum and maxi-
mum beam envelope excursions for these oscillations~for
both planes! as Xmin and Xmax, respectively. Therefore, at
some axial locationX will be at a maximum~with value
Xmax! andY will be at a minimum~with valueXmin!. This
position will be the location of maximum image effects. It
will be our goal to find the channel parameters that will keep
the image forces below a given tolerance factorT.

Since we are interested in space-charge dominated par-
ticle beams, we start by analyzing the ratio of the image term
to the space-charge term@in such a beam 2K/(X1Y) will be
the dominant self-term#. To maintain our tolerance, this ratio
must be less than the prescribed valueT. At the axial loca-
tion where image forces are maximum this ratio is

R

4b4
Xmax~Xmax

2 2Xmin
2 !, ~6!

whereR denotes the average radius of the beam; for the
periodic channel we haveR5(Xmax1Xmin!/2. We may pa-
rametrize the maximum and minimum beam excursions by
introducing the ripple parameterD. This parameter is defined
as follows:

Xmax5~11D!R, Xmin5~12D!R. ~7!

Inserting these values into Eq.~6! yields

R4
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Thus, to keep the image effects less than a factorT of the
overall beam dynamics we must have

R

b
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To get a flavor for this requirement we apply this formula to
some typical numbers. If we pick a large but reasonable
value for the ripple factor, say 0.3, we find that to maintain a
tolerance factor ofT50.10 ~10% tolerance! the ratioR/b
must be less than 0.7, which means thatXmax is less than
0.9b. For T50.05 ~5% tolerance! we find thatR should be
less than 0.6b andXmax less than 0.8b. Thus, these effects
should be minimal in most situations. Only when the beam
fills a substantial portion of the beam pipe and is sufficiently
eccentric~round beams do not experience image effects! will
images play a significant role.

For an emittance dominated beam we form the ratio be-
tween the image term and the emittance term. At our point of
maximumX excursion we find this ratio to be
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We can simplify the analysis by realizing for the emittance-
dominated beam the emittance term must be much greater
than the perveance term. This requirement yields the inequal-
ity

ex
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To satisfy the above, let us say thate x
2/K5GR2(11D)3,

whereG is a large number. Then for a tolerance factorT we
find from Eq.~10! that
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Comparing this equation with Eq.~9! we see that the image
forces for an emittance-dominated beam can potentially be
more significant because of the factorG1/4.

B. Sheet beam

We may use the results of Sec. II to approximate the
image effects on a sheet beam in a cylindrical pipe. For such
a beam we assume that the beam dimensions are much larger
in one plane than in the other. The result is a beam that is
fairly flat, or a sheet. These types of beams are used in free-
electron lasers, for instance. We only consider the space-
charge dominated regime. Again, it will be our goal to de-
termine the design parameters which maintain the image
effects below a given toleranceT.

We assume that thex plane has the larger beam dimen-
sion. Therefore, the image effects will be at a maximum
whenX has a maximum, call thisXmax, andY has a mini-
mum, call thisYmin . Let n denote the ratio ofXmax to Ymin ,
that is,

n[
Xmax

Ymin
. ~13!

Typically n will have values of five or larger for sheet beams.
We mention that they plane emittance will be aboutn times
the x plane emittance due to beam compression. However,
since we are only interested in the space-charge dominated
situation we do not consider this effect. As before, we form
the ratio of the image term to the space-charge term in Eqs.
~5! to analyze the effects of images. LettingT denote the
tolerance factor for the image effects, we have

1

8b4
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2 2Ymin
2 !~Xmax1Ymin!,T ~14!

for the x plane and

U 1
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2886 54CHRISTOPHER K. ALLEN AND MARTIN REISER



for the y plane. Note that in this situation the image forces
are defocusing in thex plane and focusing in they plane
@thus, the absolute value is necessary in Eq.~15!#. Solving
Eq. ~13! for Xmin and then substituting into the above two
equations yields

Xmax

b
,F 8n3

n31n22n21G1/4T1/4 ~16!

for the x plane and

Xmax

b
,F 8n4

n31n22n21G1/4T1/4 ~17!

for the y plane. Sincen is always greater than 1, they
plane’s requirement is automatically satisfied whenever thex
plane’s tolerance is met. Thus, we need only consider Eq.
~16!.

We may rewrite Eq.~16! as

Xmax

b
,P~n!T1/4, ~18!

whereP(n) is the function defined by

P~n![F 8n3

n31n22n21G1/4. ~19!

The functionP(n) is plotted in Fig. 2. It blows up at the
point n51 ~since there are no image effects for a round
beam! then asymptotically approaches 81/4 as n approaches
infinity. Note, however, that atn53 there is an absolute
minimum ofP(n) in the interval@1,̀ !. This suggests a reso-
nance condition in the beam pipe. Therefore, to maintain the
safest possible margin, the ratioXmax to b should always be
kept below the valueP(3)T1/45(27/4)1/4T1/4'1.61T1/4. For
the tolerances ofT50.05 ~5%! and T50.10 ~10%! this
would requireXmax,0.76b andXmax,0.91b, respectively.

To get an appreciation for the full condition, consider the
case wheren55 and we want a 10% tolerance (T50.1). We
find thatXmaxmust be less than 0.92b. This condition should
be fairly easy to meet in order to ignore image effects. For
the more demanding case ofn510 and a 5% tolerance (T
50.05) we must haveXmax,0.78b to avoid significant ef-
fects from images. Obviously in this situation the designer
must be much more conscious of the role of images. Finally,
we note that asn becomes large, say greater than 10, the
tolerance condition approachesXmax,81/4T1/4b and is essen-

tially independent of the ration. To compare this situation
with the safest tolerance margin~evaluatingP at n53! con-
sider the tolerances ofT50.05 and 0.10. This requires
Xmax,0.80b andXmax,0.95b, respectively.

C. Quadrupole matching section

In the University of Maryland’s Electron Ring Experi-
ment a matching section of five lenses matches an electron
beam from the cathode source to a transport channel com-
posed of magnetic quadrupole lenses. The matching section
is composed of one~initial! solenoid lens followed by four
magnetic quadrupole lenses. The quadrupole lenses are ar-
ranged so that they have the same axial locations as the
lenses in the transport channel, but their focusing strengths
remain adjustable. Figure 3~a! shows the simulation results
obtained with a fourth-order Runge-Kutta integration of Eqs.
~5!. In the figure, both theX andY envelopes of the beam are
shown with and without image effects from a beam pipe with
radiusb51.5 cm. The solid lines represent the free-space
solution while the dashed lines show the solution with image
effects from the pipe. Figure 3~b! shows the focusing func-
tion kx(z) for the matching section. Since the first lens is a
solenoid, it has focusing in both planes; theX andY enve-
lopes do not separate until the beam passes through the sec-
ond lens.

One can see that the image effects do not play a large role
in the beam dynamics. However, one can also see that the
beam will no longer be matched to the transport channel, so
it is not an insignificant effect here. Matching sections, over-
all, will probably be more susceptible to image effects since
the beam envelopes tend to make larger excursions through
them. In this example we did not see an appreciable effect
until the beam pipe radius was decreased to 1.5 cm. Notice

FIG. 2. Image effect tolerance function for a sheet beam.

FIG. 3. Image effects for a magnetic quadrupole matching sys-
tem. The solid lines in~a! represent thex and y envelopes of the
free-space solution while the dotted lines represent the solution in
the presents of a pipe of radius 1.5 cm.
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that the images affect the beam most around the axial loca-
tion z50.6 m, where the difference in theX andY envelopes
is at a maximum and the beam’sY envelope fills 87% of the
pipe. At this point theY envelope experiences a slight defo-
cusing due to the pipe and subsequently remains larger than
its free-space trajectory.

IV. CONCLUSION

We have found that under certain circumstances image
effects play a significant role in the dynamics of continuous
beams having elliptical symmetry. When the beam is suffi-
ciently eccentric and fills out a substantial portion of the
beam pipe, the image forces notably affect the beam dynam-
ics. In practice, these situations will most likely occur in
matching sections where the beam experiences large eccen-
tricities and large excursions through the beam pipe. In cir-
cumstances where the beam envelope excursions are less ex-
treme, that is, they do not deviate much from the average
radius, we expect the image forces considered here to be
insignificant. In such situations perhaps a more important
effect from images would be due an off-centered beam. Here
the image forces would draw the entire beam farther off its

center position. This effect is widely known and is covered
in Ref. @7#, Chap. 4.

As mentioned previously, this approach is not self-
consistent. Unless we are fortunate enough to know the rms
emittances along the channel, we must assume that they are
constant, which is artificial. Since the image effects are non-
linear, the rms emittances will typically increase through the
channel, violating the assumption of constant emittances.
However, for space-charge dominated situations the in-
creased emittance is a minor effect. Thus, our model will still
yield meaningful results. More important, we have a way not
only to simulate the beam dynamics with images but also to
quantify analytically when these effects will play a signifi-
cant role. It would seem that the best design strategy is to
avoid such effects. The work presented in this paper will
give the designer an easy way to check that his or her design
will reduce any unwanted influences from image forces.
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