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Image effects of cylindrical pipes on continuous beams
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We analyze the image effects of a cylindrical pipe on continuous beams with elliptical symmetry. Differ-
ential equations involving the second-order spatial moments of a particle distribution are given. From the
moment equations, a set of Kapchinskij-Vladimirskij-type equations is developed, which include the image
effects of a cylindrical beam pipe. These equations are used to analyze the image effects for focusing, drift,
defocusing, drift channels, sheet beams, and a magnetic quadrupole matching section.
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I. INTRODUCTION axis (not shown corresponding to the pointx(y)=(0,0).
The beam haz envelopea, , andy envelopea, . Of course,

In most accelerator applications a particle beam mustor more general distributiores, anda, will no longer be the
propagate through a conducting beam pipe. If the beam dix andy envelopes of the beam, but will be the major and
mensions are comparable to the pipe dimensions then thainor semiaxes of ellipses along which the charge density is
image forces from the pipe will affect the beam dynamics.constant.

Usually these are unwanted effects, so by studying such phe-

nomena we hope to develop techniques to reduce their influ- A. The equivalent beam concept

ence. In previous works we have analyzed image effects for
axisymmetric bunched beams in cylindrical pidéds2]. In
this paper we continue the analysis for continuous beam
having elliptical symmetry. The primary application of these
results would be the analysis of magnetic quadrupole tran
port systems.

Our work is essentially an extension to the results of Sa-
gherer[3]. He derived a set of coupled, ordinary differential
equations that describe the evolution of the rms beam enve-
ope for all continuous beams having elliptical symmetry.
hese equations have the same functional form as the
Here we consider continuous beams centered onzthe Kapchinsk?j-VIadimirskij [4] couple_d-enve_lop_e gquations
(KV equations. Indeed, for the uniform distribution these

axis, the axis of propagation, having elliptical symmetry. By i . ;
elliptical symmetry, we mean that the beam is symmetricequat'ons are the KV equations exactly. Sacherer’s result led

across the planes=0 andy=0. Elliptical symmetry also to the idea of the equivalent KV beam.

implies that thetransversecharge density of the beam must Sachergr’s form"’_‘l'sm allows us to model any continuous
ll)ﬁ,-am having elliptical symmetry with an equivalent KV

be constant along concentric ellipses. We assume the beab ; . . . . X
pipe to be cylindrical with radiub. We also assume the pipe 2€3M-: Th'§ equwalgnt beam is a u_mform-densn.y, continuous
to be perfectly conducting and, for necessity in constructinggeam having elliptical cross section and having the same
the Green's function, we hold it at ground potentighis ecqnd moments as the actual beam under study. The second
does not affect the analysisFigure 1 depicts the example spatial moments are called the rms envelopes of'the beam.
situation of a uniform elliptical distribution in a cylindrical "€ KV equivalent beam has beam envelopes twice that of
pipe. A transverse cross section of the beam and beam pipe 13¢ actual _beam § rms beam envelopes. Also, th_e emittances
shown lying in thexy plane. The beam is centered on the o] thg equivalent beam, called the effective emittances, are
four times the rms emittances of the actual beam. Thus, the
KV coupled-envelope equations may be used to model any
continuous beam with elliptical symmetry if the rms beam
envelopes and effective emittance values are used in the
equation.

The main achievement of our work is the addition of
terms to the KV equations that describe the dominant effects
of a cylindrical beam pipe. More specifically, we extend Sa-
cherer’s equations to include the first-order image effects due
to the beam pipe. We then translate these equations to that of
the equivalent KV beam. The result is the original KV equa-
tions with a term adde@o each equation which accounts
for images.

B. Limitations and assumptions

FIG. 1. Example geometry of ellipsoidally symmetric uniform  The major shortcoming of this work is the assumption
beam in a cylindrical pipe. that the rms emittances are constant or kn@apriori. The
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forehand knowledge of the rms emittances through the bea@reen’s function in polar coordinates. By expanding Green’s
channel is usually an unrealistic expectation. Since rms emitunction in a trigonometric series, we can identify the terms
tance growth may occur with nonlinear forqesid the image corresponding to the inducg@mage charges on the beam
forces are typically nonlinegrthe assumption of constant pipe. Taking the moments of these fields we @&t
emittances leaves us with a potentially inconsistent analysis. o 1/2 )
Thus, it would seem that the best utilization of our work (x%) +2ﬂ 2y (y2))
would be to determine under what conditions image forces { (X224 (y2)12 7= pt (=
(xH? (N <y4>2”

gN

B 47T€0

XEy)

precise prediction of beam behavior under the influence of
image forces.

In this paper we neglect longitudinal effects. That is we o i i
assume that the continuous beam expands and contrad‘t@er?o() indicates the' standard order notation. The fII’St.
gradually enough to ignore the longitudinal self-fields. Also,t€m in the above equation represents the free-space contri-
this implies that the focusing system is ideal in that no axiaPution to(xE,), while the second term represents the contri-
forces are produced. With these assumptions we may tregttion due to the induced charges from the distribution’s
each cross section of the beam independently. The transverdg@drupole moment. The last term is intended to indicate
motion is decoupled from the longitudinal motion and only that the image forces due to the higher-order moments of the
the transverse self-forces and focusing forces affect the beaffiarge distribution(octupole moments and upscale as
at each cross section. Thus, for each axial locatiore may ~ (X')/b”, etc.

describe the beam by a distribution function of the transverse BY substituting Eq.(3) into Egs. (1) we have moment
phase-space variablesx’, y, andy’. equations that include the first-order image effects. However,

it is the KV equivalent beam that is of interest. Defining the
envelopes of the KV equivalent beam in tkendy planes
by X(z) andY(z), respectively, we know that

Let () denote the moment operator with respect to the

particle beam distribution. It is possible to derive a set of X:2<X2>1/2’

4
coupled differential equations for the second spatial mo- . . _
2 2 ; Ctrib I for this beam. Collecting these results and substituting them
f th I . . ; :
ments(x") and(y") of the particle beam distributiof8], into Egs. (1) yields the following set of equations for the

play a significant role in the beam dynamics, rather than the
b8 * b® o P

+0 3

IIl. THE ENVELOPE EQUATIONS WITH IMAGES

Y= 2<y2>1/2

oy [<X2>r]2 N 2k (2) - 2q E 165_0 equivalent KV beam:
2(x*%) " ymv? ymy? T (xE) 2k & K
n - 3_ 2 —
2y172 ~2 @ X't 2)X X+Y X3 4p? (X*=XY¥9)=0,
(y?)"- WO T, 242 y2>——22q (YE)) = 7o =0 (5
2(y%)  ymr? ymi? (R , 2K & K .
VR DYy v g (YO0

where the prime indicates differentiation with respecz,tq

is the particle chargem is the particle mass; is the beam’s
axial velocity, —k,(z)x is the focusing force in th& direc-
tion, andE, is the beam’s self-field in th& direction. We
have similar defirﬂtions Ipﬁ ky(2)y andE, in they direc-
tion. The symbols, ande, represent the rms emittances in

thex andy planes, respectively. For systems where all force
are linear, it is known that the rms emittances are invarian

[5]. If there exist nonlinear forceésay in E,) we simply

i?given by 4e, and

whereK =ql/(2megymv®) is the generalized beam perver-
ance [7] (I being the beam current and
Kx(2) = ky(2)/ (ymv?) and ky(z) =k, (2)/(ymv?) are the fo-
cusing functions in thex andy planes, respectively. The
guantitiese, ande, are the effective emittances of the beam
4%3,, respectively. These equations are rec-
gnized as the standard KV coupled-envelope equations with

the addition of a ternffor each equationaccounting for the

assume that either, is constant or its variation is knowad  jominant image effects. Since the beam is centered and has

priori. _ elliptical symmetry,(x®) is zero and the next image term
The only unknowns in Eqgs(l) are (xE,) and(yE,). _ will be an octupole term.

Sacherer computed these quantities for the free-space situa-
tion. He found the surprisingly simple result Il EXAMPLES AND ANALYSIS
gN a,  aN (A2

_ We may use Eqg5) to explore the effects of the beam
4meg agta, 4me (x?) 2y (y2y 12>

pipe on the beam dynamics. In this section we present three
example situations to determine the significance of image
with an analogous result fdiyE,). Note that the above ex- effects in typical applications. The first example is a periodic
pression is independent of the distribution; this conditiontransport channel made @hagneti¢ quadrupole lenses. We
leads to the notion of KV equivalent beams. Also, the abovdreat this example completely analytically by comparing the
expression provides coupling between the two equations irelative strengths of the competing terms in E@9. The

(1). Substituting this expression fOxE,) in Egs.(1) leadsto  second example is the approximate analysis of a sheet beam
Sacherer’s equations for the rms beam envel<z§pé)s“2 and in a cylindrical pipe. The third example is a matching section
<y2)1’2. However, we wish to include the effects of images infor a quadrupole transport channel used in the University of
this model. We compute the fields including images usingMaryland’s Electron Ring Experimefi8,9]. In this example

(XEp= 3]
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we numerically integrate Eq$5) to analyze the effects of For an emittance dominated beam we form the ratio be-
images. tween the image term and the emittance term. At our point of
maximumX excursion we find this ratio to be

A. Periodic transport channel K R

Consider a periodic transport channel made up of mag- 297 (1+4)%A. (10
netic quadrupoles in a FODO arrangeméfiocusing, drift, X

defocusing, drift. Assume that we have a matched beamye can simplify the analysis by realizing for the emittance-
with equalx andy emittances. In addition assume that the yominated beam the emittance term must be much greater

FODO channel is symmetric, that is, it has equal focusingnan the perveance term. This requirement yields the inequal-
and defocusing strengths in each plane. In such a perlodq@y

channel, the beam envelopgsandY will oscillate 180° out

of phase with each other. We denote the minimum and maxi- €2

mum beam envelope excursions for these oscillatidas E>R2(1+A)3' (11
both planes as X, and X,.x, respectively. Therefore, at

some axial locationX will be at a maximum(with value To satisfy the above, let us say thai/K=GR2(1+A)3,

xma.x). andY will be at a minimum(vv_ith val.ue Xmin)- This whereG is a large number. Then for a tolerance factowe
position will be the location of maximum image effects. It e 0 Eq.(10) that

will be our goal to find the channel parameters that will keep

the image forces below a given tolerance fadfor R
Since we are interested in space-charge dominated par- E<

ticle beams, we start by analyzing the ratio of the image term

to the space-charge terfim such a beam R/(X+Y) will be

the dominant self-terfin To maintain our tolerance, this ratio

must be less than the prescribed valueAt the axial loca-

tion where image forces are maximum this ratio is

GT 1/4

A+A? 42

Comparing this equation with Eg9) we see that the image
forces for an emittance-dominated beam can potentially be
more significant because of the fac®t.

B. Sheet beam

R
— Xinad Xerax— X2, 6 .
4b* max Xinax ™ Xin) © We may use the results of Sec. Il to approximate the

image effects on a sheet beam in a cylindrical pipe. For such
where R denotes the average radius of the beam; for thé beam we assume that the beam dimensions are much larger
periodic channel we havB= (X .+ Xqi)/2. We may pa- in one plane than in the other. The result is a beam that is
rametrize the maximum and minimum beam excursions byairly flat, or a sheet. These types of beams are used in free-
introducing the ripple parametér. This parameter is defined electron lasers, for instance. We only consider the space-

as follows: charge dominated regime. Again, it will be our goal to de-
termine the design parameters which maintain the image
Xmax= (1+ AR, Xpin=(1—A)R. (7)  effects below a given tolerande

We assume that the plane has the larger beam dimen-
sion. Therefore, the image effects will be at a maximum

Inserting these values into E ields . ; o
g ®y when X has a maximum, call thiX,,,,, andY has a mini-

" mum, call thisY,,. Let v denote the ratio 0K, t0 Y min»
o (A+A2). (8) that is,
— Xmax (13)
Thus, to keep the image effects less than a fa€taf the Y= Y min

overall beam dynamics we must have
Typically » will have values of five or larger for sheet beams.

1/4 We mention that thg plane emittance will be abouttimes
(99  thex plane emittance due to beam compression. However,
since we are only interested in the space-charge dominated

. . ) situation we do not consider this effect. As before, we form
To get a flavor for this requirement we apply this formula to e ratio of the image term to the space-charge term in Egs.

some typical numbers. If we pick a large but reasonablgs) (5 analyze the effects of images. Lettiigdenote the
value for the ripple factor, say 0.3, we find that to maintain a|arance factor for the image effects, we have
tolerance factor off=0.10 (10% tolerancg the ratio R/b '

must be less than 0.7, which means tXat,, is less than 1

0.%. For T=0.05 (5% tolerancgwe find thatR should be 3p% Ximak X Y i) Kimaxt Ymin) <T (14
less than 0.6 and X, less than 0.B. Thus, these effects

should be minimal in most situations. Only when the beamfor the x plane and

fills a substantial portion of the beam pipe and is sufficiently
eccentricround beams do not experience image effewil 1
images play a significant role. 357 Y i Y210— X2 0 (Y min T Xmad | <T (15)

R
B<

-
A+A?
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FIG. 2. Image effect tolerance function for a sheet beam. £ ; [
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for the y plane. Note that in this situation the image forces S /\ i 1 |
are defocusing in th& plane and focusing in thg plane £ 0 l_[ l)’
[thus, the absolute value is necessary in @&)]. Solving §200 || ||
Eq. (13 for X, and then substituting into the above two W N
equations yields -400 , , : ; ,
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FIG. 3. Image effects for a magnetic quadrupole matching sys-
tem. The solid lines in@) represent thex andy envelopes of the
1/4 free-space solution while the dotted lines represent the solution in
T4 (17 the presents of a pipe of radius 1.5 cm.

for the x plane and

8v*
V3 +2—v—1

Xmax

b

tially independent of the ratie. To compare this situation

for the y plane. Sincev is always greater than 1, the . ;
, : : : e ! th the safest tolerance margiavaluatingP at »=3) con-
lane’s requirement is automaticall isfied whenevekthe V! . .
P 9 ally satisfied whenevexthe ider the tolerances of=0.05 and 0.10. This requires

lane’s tol i t. Th i ¥ )
?12)”‘33 olerance is me us, we need only consider Eimax<0.8Cb andX.,.<0.95, respectively.

We may rewrite Eq(16) as
C. Quadrupole matching section

X
gax< P(v)TY, (18 In the University of Maryland’s Electron Ring Experi-
ment a matching section of five lenses matches an electron
whereP(v) is the function defined by beam from the cathode source to a transport channel com-
posed of magnetic quadrupole lenses. The matching section
8v° va is composed of onéinitial) solenoid lens followed by four
P(v)= P E— (19 magnetic quadrupole lenses. The quadrupole lenses are ar-

ranged so that they have the same axial locations as the

The functionP(v) is plotted in Fig. 2. It blows up at the lenses in the transport channel, but their focusing strengths
point v=1 (since there are no image effects for a roundremain adjustable. Figure(@ shows the simulation results
bean then asymptotically approached“8as » approaches obtained with a fourth-order Runge-Kutta integration of Egs.
infinity. Note, however, that av=3 there is an absolute (5). Inthe figure, both thX andY envelopes of the beam are
minimum of P(v) in the interval[1,,). This suggests a reso- shown with and without image effects from a beam pipe with
nance condition in the beam pipe. Therefore, to maintain theadiusb=1.5 cm. The solid lines represent the free-space
safest possible margin, the ratig,,, to b should always be solution while the dashed lines show the solution with image
kept below the valu®(3)TY4=(27/4)TY*~1.61TY* For  effects from the pipe. Figure(8) shows the focusing func-
the tolerances off=0.05 (5%) and T=0.10 (10%) this tion «,(z) for the matching section. Since the first lens is a
would requireX,,,<0.76 and X,,,,<0.91b, respectively. solenoid, it has focusing in both planes; tkeandY enve-

To get an appreciation for the full condition, consider thelopes do not separate until the beam passes through the sec-
case where/=5 and we want a 10% toleranc&€0.1). We  ond lens.
find thatX,,,, must be less than 0.82This condition should One can see that the image effects do not play a large role
be fairly easy to meet in order to ignore image effects. Foin the beam dynamics. However, one can also see that the
the more demanding case 010 and a 5% tolerancel( beam will no longer be matched to the transport channel, so
=0.05) we must have,,,,<0.7& to avoid significant ef- it is not an insignificant effect here. Matching sections, over-
fects from images. Obviously in this situation the designerall, will probably be more susceptible to image effects since
must be much more conscious of the role of images. Finallythe beam envelopes tend to make larger excursions through
we note that as» becomes large, say greater than 10, thethem. In this example we did not see an appreciable effect
tolerance condition approachis,.,<8Y4T* and is essen- until the beam pipe radius was decreased to 1.5 cm. Notice
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that the images affect the beam most around the axial locazenter position. This effect is widely known and is covered
tion z=0.6 m, where the difference in tdéandY envelopes in Ref.[7], Chap. 4.

is at a maximum and the beanisenvelope fills 87% of the As mentioned previously, this approach is not self-
pipe. At this point theY envelope experiences a slight defo- consistent. Unless we are fortunate enough to know the rms
cusing due to the pipe and subsequently remains larger thamittances along the channel, we must assume that they are

its free-space trajectory. constant, which is artificial. Since the image effects are non-
linear, the rms emittances will typically increase through the
IV. CONCLUSION channel, violating the assumption of constant emittances.

o _ However, for space-charge dominated situations the in-
We have found that under certain circumstances imaggreased emittance is a minor effect. Thus, our model will still

effects play a significant role in the dynamics of continuousyie|d meaningful results. More important, we have a way not
beams having elliptical symmetry. When the beam is suffipply to simulate the beam dynamics with images but also to
ciently eccentric and fills out a substantial portion of theqyantify analytically when these effects will play a signifi-
beam pipe, the image forces notably affect the beam dynameant role. It would seem that the best design strategy is to
ics. In practice, these situations will most likely occur in ayoid such effects. The work presented in this paper will
matching sections where the beam experiences large eccediive the designer an easy way to check that his or her design

tricities and large excursions through the beam pipe. In Ciryill reduce any unwanted influences from image forces.
cumstances where the beam envelope excursions are less ex-

treme, that is, they do not deviate much from the average
radius, we expect the image forces considered here to be
insignificant. In such situations perhaps a more important The authors want to thank Richard Cooper for many use-
effect from images would be due an off-centered beam. Her&l suggestions and corrections in preparing the manuscript.
the image forces would draw the entire beam farther off itsThis work was supported by the U.S. DOE.
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